Monitoraggio del territorio

Visualizza articoli per tag: Monitoraggio del territorio

Nuovi dati dei satelliti radar Cosmo-SkyMed dell’Agenzia Spaziale Italiana hanno mostrato gli effetti permanenti dei movimenti del suolo relativi al terremoto del 29 maggio permettendo ai ricercatori di IREA-CNR e INGV di valutarne gli effetti. Rilevato un sollevamento dell’area fino a 12 centimetri

 

defo_map_google_IREAContinua l’attività di monitoraggio dallo Spazio delle aree dell’Emilia Romagna colpite dal terremoto, avviata dal Dipartimento della Protezione Civile dopo l’inizio della sequenza sismica. Le nuove acquisizioni radar dei satelliti della costellazione Cosmo-SkyMed programmate dall’Agenzia Spaziale Italiana su tutta l’area in cui sono in atto fenomeni sismici hanno permesso di studiare gli effetti permanenti dei movimenti del suolo causati dalla scossa del 29 maggio 2012.

Lo studio è stato condotto da un team congiunto di ricercatori dell’Istituto per il Rilevamento Elettromagnetico dell’Ambiente del Consiglio Nazionale delle Ricerche (IREA-CNR) di Napoli e dell’Istituto Nazionale di Geofisica e Vulcanologia (INGV) mediante una tecnica denominata interferometria differenziale, che permette di misurare spostamenti del terreno anche dell’ordine di pochi centimetri su grandi aree.

L’ultima acquisizione del sistema Cosmo-SkyMed sulla zona interessata dal sisma era avvenuta la sera del 27 maggio, due giorni prima del secondo evento. Il calcolo della deformazione del suolo dovuta alla forte scossa del 29 maggio è stato possibile dopo il primo passaggio utile del primo dei quattro satelliti della costellazione sulla orbita, avvenuto nella serata del 4 giugno.

L’uso dei satelliti di Cosmo-SkyMed, caratterizzati da tempi di rivisita molto brevi, ha permesso di studiare e separare gli effetti delle prime scosse sismiche del 20 maggio da quelle avvenute il 29. Questi ultimi hanno causato un sollevamento del suolo fino a 12 centimetri. La zona maggiormente interessata si estende per circa 50 chilometri quadrati, tra Mirandola e San Felice sul Panaro nella provincia di Modena.

L’immagine mostra la mappa degli spostamenti ricavata dall’interferogramma. Le zone in rosso sono quelle che hanno subito il maggior innalzamento, mentre le aree stabili sono in verde. Il sollevamento è stato causato dallo scorrimento in profondità dei due lembi della faglia sulla quale si è originato il terremoto del 29 maggio.

Il risultato ottenuto è particolarmente interessante in quanto consente una analisi completa della zona interessata dalle deformazioni del suolo, che mostra un orientamento prevalentemente est-ovest. Le sue caratteristiche, e il confronto con i dati della sismicità, indicano che la faglia del 29 maggio si colloca nella continuazione verso ovest di quella del terremoto del 20 maggio.

A partire dalle informazioni fornite dall' INGV, i ricercatori dell’IREA hanno poi realizzato un modello della sorgente responsabile delle deformazioni osservate, che ne descrive forma e localizzazione. L’analisi preliminare dei residui, ossia le differenze tra le deformazioni reali e quelle ricostruite dal modello, evidenzia la presenza di effetti deformativi riferibili agli eventi di magnitudo superiore a 5 verificatesi all'interno dell'intervallo temporale considerato. 

terremoto_modello

 

Vai alle altre notizie in evidenza

Pubblicato in Notizie in evidenza

A seguito dell’eruzione del vulcano Etna iniziata il 24 dicembre 2018 e dello sciame sismico che ha accompagnato questo evento e perdura tuttora, nel quadro delle attività coordinate dal Dipartimento della Protezione Civile, i ricercatori del CNR-IREA e delle Sezioni dell’INGV di Catania-Osservatorio Etneo e Osservatorio Nazionale Terremoti di Roma hanno misurato i movimenti permanenti del terreno grazie ai radar satellitari italiani COSMO-SkyMed ed europei Sentinel-1. Sono stati evidenziati valori massimi di spostamento che superano i 30 cm verso Ovest e i 50 cm verso Est sulla sommità dell’Etna e, nell’area attivata dal terremoto di Mw 4.9, uno spostamento massimo verso Est di circa 13 cm, ed uno verso Ovest di circa 16 cm.

 
A seguito dell’eruzione laterale del vulcano Etna iniziata il 24 dicembre 2018 e dell’evento sismico di magnitudo Mw 4.9 localizzato dall’INGV nella zona di Viagrande (CT), il Dipartimento della Protezione Civile (DPC) ha attivato il Consiglio Nazionale delle Ricerche - Istituto per il Rilevamento Elettromagnetico dell’Ambiente (CNR-IREA) di Napoli, in qualità di centro di competenza nel settore dell’elaborazione dei dati radar satellitari, per un’analisi volta alla misura dei movimenti del suolo conseguenti.

L'eruzione e la sequenza sismica con il mainshock finora registrato di Mw 4.9 sono stati monitorati fin dall'inizio dall'INGV di Catania e Roma e vengono tenuti costantemente sotto controllo h24 mediante le reti sismica e geodetica. Nell’ambito delle proprie attività di monitoraggio del vulcano Etna effettuate anche tramite reti gravimetriche e magnetiche, geochimiche (flussi dei gas nel pennacchio, dal suolo e dalle fumarole), telecamere termiche e “nel campo del visibile” e con sopralluoghi sul terreno, la sede dell’INGV di Catania – Osservatorio Etneo, in collaborazione con la sede di Roma – Osservatorio Nazionale Terremoti, hanno inoltre effettuato un’analisi preliminare dei dati radar satellitari relativi alla eruzione iniziata il 24 dicembre 2018 e allo sciame sismico associato, da integrare con le informazioni fornite dagli altri sistemi di monitoraggio.

Utilizzando i dati radar dei satelliti europei Sentinel-1 (S1), del programma europeo Copernicus, e quelli della costellazione italiana COSMO-SkyMed (CSK), dell’Agenzia Spaziale Italiana (ASI) - centro di competenza per le acquisizioni ed utilizzo dei dati satellitari - e del Ministero della Difesa, un team di ricercatori del CNR-IREA e dell’INGV, ha rilevato la frattura che ha alimentato la colata lavica causata dall’eruzione e misurato con alta precisione i movimenti permanenti del suolo, utilizzando la tecnica dell'Interferometria SAR Differenziale. Tale tecnica consente, confrontando immagini radar acquisite prima e dopo gli eventi sismici, di misurare, lungo la linea di vista (LOS, Line of Sight) del sensore, lo spostamento del suolo avvenuto nell’intervallo temporale intercorso fra le due acquisizioni, con accuratezza centimetrica. Inoltre, disponendo dei passaggi da orbite differenti (ascendenti e discendenti) è possibile ricostruire anche la componente Orizzontale (in direzione Est-Ovest) e Verticale del campo di deformazione rilevato. In Tabella 1 sono riportate le coppie interferometriche di immagini radar i cui risultati vengono mostrati di seguito.

       Sensore

Coppia interferometrica

Lunghezza d’onda [cm]

Baseline perpendicolare[m]

 Orbita 

          S1B-S1A

22122018 – 28122018

5.56

65

DISC

          S1A-S1B

16122018 – 28122018

5.56

66

ASC

          S1A-S1B

22122018 – 28122018

5.56

160

ASC

        CSK

23102018 – 26122018

3.12

279

DISC

Tabella 1: Coppie interferometriche co-sismiche utilizzate per l’analisi condotta

 
In Figura 1 è mostrato un confronto tra le immagini di ampiezza (modulo) acquisite dalla costellazione CSK prima e dopo gli eventi vulcanici e sismici analizzati, come riportato in Tabella 1. Grazie all’alta risoluzione dei sensori CSK (dell’ordine di qualche metro), nell’immagine post-eventi si nota chiaramente la formazione della frattura che ha alimentato la colata lavica causata dall’eruzione iniziata il 24 dicembre. Va sottolineato come la costellazione CSK, a seguito della richiesta di intervento per l’emergenza in corso, abbia acquisito la prima immagine a meno di 24 ore dall’evento sismico ed ulteriori acquisizioni sono state effettuate il 30 Dicembre per garantire continuità al monitoraggio della zona di interesse.  

Si noti che in Figura 1 sono state riportate le immagini rappresentate in coordinate radar piuttosto che in coordinate geografiche o cartografiche per evitare di enfatizzare le distorsioni geometriche dovute alla topografia dell’area e alla geometria di acquisizione del sensore radar (angolo di vista 34°).  

 

ETNA

Figura 1 – Confronto tra le immagini di ampiezza CSK, rappresentate in coordinate radar, acquisite prima e dopo gli eventi analizzati; (a) immagine di ampiezza CSK pre-eventi acquisita il 23102018; (b) immagine di ampiezza CSK post-evento acquisita il 26122018 (il box rosso è relativo all’area zoomata nei pannelli (c) e (d)); (c) zoom dell’immagine CSK pre-eventi relativa alla zona interessata dalla frattura e la conseguente colata lavica; (d) zoom dell’immagine CSK post-evento relativa alla zona interessata dalla frattura (evidenziata con le ellissi gialle) e la conseguente colata lavica (evidenziata con le frecce verdi). I dati CSK sono copyright di ASI (2018).

 
In Figura 2(a,b) vengono mostrate le mappe di spostamento del suolo, in LOS, ottenute a partire dalle coppie di dati S1 riportati in Tabella 1, calcolate nei pixel caratterizzati da una buona qualità del segnale interferometrico (detti pixel coerenti). Inoltre, in Figura 2(c,d) vengono mostrate le mappe delle componenti Orizzontale (in direzione Est-Ovest) e Verticale degli spostamenti del suolo misurati, che sono state stimate a partire dall’utilizzo congiunto delle mappe di deformazione LOS di Figura 2(a) e Figura (2b), ottenute rispettivamente da orbite ascendenti (per le quali i satelliti si spostano da Sud a Nord) e discendenti (per le quali i satelliti si spostano da Nord a Sud). L’analisi dei risultati ottenuti evidenzia che la mappa degli spostamenti nella direzione Est-Ovest (Figura 2c) mostra le entità più significative, i cui valori massimi superano i 30 cm verso Ovest e i 50 verso Est sulla sommità del vulcano. Nell’area in corrispondenza del terremoto del 26 dicembre (Mw4.9), il massimo spostamento verso Est è di 12-14 cm, mentre il corrispondente verso Ovest è di 15-17 cm. 

 ETNA2

Figura 2 – Mappe di deformazione in LOS ottenute a partire dai dati SAR Sentinel-1 (a,b) e mappe delle componenti orizzontale (in direzione Est-Ovest) e verticale degli spostamenti del suolo stimate a partire dalle mappe LOS (c,d). Nel dettaglio: (a) mappa ottenuta dalla coppia interferometrica S1 ascendente relativa all’intervallo 16122018 – 28122018; (b) mappa ottenuta dalla coppia interferometrica S1 discendente relativa all’intervallo 22122018 – 28122018; (c) componente orizzontale (Est-Ovest) degli spostamenti del suolo misurati; (d) componente verticale. I dati S1 sono copyright di Copernicus (2018). 

 
In Figura 3, si mostrano i risultati dell’elaborazione interferometrica in fase e in spostamento lungo la linea di vista delle coppie interferometriche Sentinel 1A/1B 22/12/2018–28/12/2018 acquisite in geometria ascendente e discendente,  effettuata dai laboratori di telerilevamento dell’INGV. Le due figure riportano le misure in linea di vista del sensore, rispettivamente in geometria ascendente e discendente. Il campo di deformazione che si rileva è la somma degli effetti di più sorgenti. Le immagini evidenziano la deformazione determinata dal dicco intruso il 24 dicembre nell’alta Valle del Bove, -dalla faglia di Fiandaca-Pennisi (FPF; basso versante Sud-Est) che si è mossa in occasione dell’evento di Mw 4.9 del 26/12/18, ed altre tre faglie con spostamenti minori, la faglia della Pernicana (PFS; versante Nord-Est) , la faglia di Ragalna (RFS; alto versante Sud-Ovest) e la faglia di Borello-Ognina (BOF; basso versante meridionale). Le faglie di Fiandaca-Pennisi, Pernicana e Ragalna si sono attivate nel corso dello sciame sismico tuttora registrato dalle reti INGV dell’Etna. Oltre a queste deformazioni si registra il movimento generale del fianco orientale, come già noto da numerosi studi precedenti.
 
ETNA3

Figura 3 – Interferogrammi in LOS ottenute dai dati SAR Sentinel-1 e mappe di deformazione in LOS ottenute dagli interferogrammi. Nel dettaglio: (A1) mappa ottenuta dalla coppia interferometrica S1 ascendente relativa all’intervallo 22122018 – 28122018; (A2) mappa ottenuta dalla coppia interferometrica S1 discendente relativa all’intervallo 22122018 – 28122018; (B1) deformazione in LOS corrispondente all’interferogramma A1 e (B2) deformazione in LOS corrispondente all’interferogramma A2. I dati S1 sono copyright di Copernicus (2018)

 
Si segnala che ottenere in tempi brevi un quadro sinottico delle deformazioni e degli spostamenti del suolo causati da eventi vulcanici e/o sismici rappresenta uno degli obiettivi del Dipartimento della Protezione Civile, durante una fase emergenziale. In questo caso specifico, i risultati ottenuti sono frutto della lunga e consolidata collaborazione fra il Dipartimento e i propri Centri di Competenza – in questo caso CNR-IREA, ASI e l’INGV. Sulla base delle loro competenze, questi centri supportano il DPC nell’utilizzo dei dati e delle informazioni satellitari e nella loro integrazione con i dati in situ forniti dagli altri Centri di Competenza. Quest’attività ha permesso lo sviluppo di prodotti, metodi e procedure che hanno migliorato le capacità del Servizio Nazionale della Protezione Civile nella risposta all’emergenza.

 

Il Sistema CSK è il maggior asset spaziale nazionale oggi operativo ed è attualmente costituito da una costellazione di quattro satelliti. E’ pianificato il lancio del primo di una nuova generazione di satelliti tecnologicamente più avanzati (CSG - COSMO-SkyMed Seconda Generazione) entro il 2019 seguito dal lancio di un secondo satellite a distanza di un anno. E’ stata inoltre recentemente approvata a livello governativo la realizzazione di due ulteriori satelliti CSG, a dimostrazione della attuale rilevanza strategica ed applicativa nazionale ed internazionale del sistema italiano, unica costellazione a quattro satelliti oggi operativa nel panorama mondiale.

 

 
Breve rassegna stampa:

Il gazzettino.it     31-12-2018     Etna, dopo terremoti ed eruzione il suolo si è spostato sino a 50 centimetri

Il messaggero.it     31-12-2018     Etna, dopo terremoti ed eruzione il suolo si è spostato sino a 50 centimetri

Il Mattino.it        31-12-2018     Etna, dopo terremoti ed eruzione il suolo si è spostato sino a 50 centimetri

La Repubblica.it     01-01-2019     Eruzione dell'ETNA: il vulcano si è spostato di 50 centimetri

Rainews.it           02-01-2019     ETNA. L'eruzione provoca uno spostamento del vulcano di 50 centimetri 

it.notizie.yahoo.com 02-01-2019     Eruzione Etna, gli esperti: il vulcano si è spostato di 50 centimetri

 


Vai alle altre notizie in evidenza 

 

Pubblicato in Notizie in evidenza

RPASinAir figL’IREA partecipa al progetto RPASinAir che, grazie ad un finanziamento di circa 8 milioni di euro da parte del Miur nell’ambito del Pon Ricerca e Innovazione, svilupperà l’impiego di sistemi aeromobili a pilotaggio remoto (droni) e di sensori innovativi per il monitoraggio del territorio al fine di segnalare eventi critici e aiutare la prevenzione dei rischi e la gestione delle emergenze (alluvioni, slavine, terremoti, incidenti industriali).

Nell'ambito di questo progetto, di cui è capofila il Distretto Tecnologico Aerospaziale pugliese, l’IREA-CNR coordinerà tutte le attività relative allo sviluppo di nuove metodologie e applicazioni per analizzare i dati acquisiti dai sensori a bordo dei sistemi aviotrasportai, fondendoli con dati satellitari, in situ o da archivio, per l’analisi e l’individuazione di condizioni di rischio e per il monitoraggio periodico del territorio.

Leggi la notizia sul Corriere del Mezzogiorno

 


Vai alle altre notizie in evidenza 

Pubblicato in Notizie in evidenza
Lunedì, 06 Dicembre 2010 12:01

Misura delle deformazioni dei vulcani

tenerife250La misura delle deformazioni del suolo in aree vulcaniche è di estrema importanza in quanto queste si presentano spesso come precursori di eruzioni, o comunque sono indice di un incremento dell’attività vulcanica. Sotto la spinta del magma presente al di sotto dei vulcani, infatti, l’edificio vulcanico tende a “gonfiarsi”, le sue pareti a deformarsi, fino a quando il magma non trova una via di uscita. Diversamente da ciò che si può immaginare, anche in concomitanza di fenomeni imponenti la deformazione può essere relativamente piccola, dell’ordine di alcuni centimetri o decine di centimetri.

L’utilizzo delle tecniche di Interferometria Differenziale Radar ad Apertura Sintetica (DInSAR) risulta di fondamentale importanza in questo caso. In particolare, la tecnica SBAS (acronimo di Small BAeline Subset), sviluppata interamente presso l’IREA-CNR di Napoli, permette di seguire l’evoluzione temporale della deformazione.

I vantaggi dell’applicazione di questa tecnica allo studio dei vulcani sono notevoli. Considerando che i primi satelliti utilizzabili a tale scopo hanno raccolto dati fin dal 1992, è evidente la possibilità di analizzare con un dettaglio precedentemente impensabile la storia deformativa di un vulcano negli ultimi 19 anni. Tutto questo senza avere alcuna necessità di accedere al vulcano, un ulteriore vantaggio, in caso di crisi eruttiva, rispetto a tecniche più “tradizionali”.

Inoltre, le mappe di deformazione satellitare permettono di coprire aree molto vaste e con una densità di punti di misura molto elevata. La possibilità di avere una copertura spaziale così fitta permette di tenere sotto controllo e analizzare fenomeni anche in zone dove non sono presenti sensori delle reti di sorveglianza perché non sono attesi effetti deformativi.

Inoltre, le moderne tecnologie informatiche permettono anche un accesso semplice, veloce ed intuitivo ai risultati di queste misure. A tale scopo, l’IREA-CNR di Napoli ha anche sviluppato una piattaforma web (http://webgis.irea.cnr.it/) molto semplice da utilizzare perché utilizza una interfaccia derivata da Google Maps e quindi familiare anche ad un pubblico non specialistico.

Pubblicato in Elenco applicazioni
Venerdì, 10 Giugno 2011 08:48

Qualità delle acque e vegetazione costiera

Alle metodologie che da oltre un secolo permettono di studiare le acque dei laghi, negli ultimi trent’anni si sono affiancate le tecnologie satellitari che consentono di monitorare estese porzioni di territorio, al di là dei confini geo-politici e nelle zone più remote del pianeta, con osservazioni frequenti e continue nel tempo. Il nostro studio è orientato principalmente al monitoraggio dei laghi con alcune recenti esperienze in ambienti lagunari e zone costiere, che essendo aree di transizione tra terre emerse e sommerse  sono luogo di processi e fenomeni biologici, geomorfologici, chimici e fisici complessi e spesso di difficile comprensione. Le attività di ricerca mirano in particolare all’implementazione di algoritmi per la generazione di prodotti di rilevanza sia ecologica e ambientale sia gestionale, nell’ottica di fornire un contributo all’implementazione della direttiva quadro sulle acque della Commissione Europea Water Framework Directive (WFD 2000/60). Ad oggi i parametri derivabili da telerilevamento sono:

  • concentrazione di clorofilla-a (proxy del fitoplancton). Il fitoplancton, composto da micro-alghe, rappresenta la base della catena alimentare acquatica ed è un’importante variabile nella stima dei processi di produzione primaria. L’attività di ricerca riguarderà inoltre lo sviluppo di algoritmi per il riconoscimento dei pigmenti algali, quali le ficocianine presenti nei cianobatteri. Queste alghe sono infatti potenzialmente tossiche con frequenze di occorrenza in costante aumento;
  • concentrazione di solidi sospesi nelle sue componenti organiche ed inorganiche. I solidi sono un tracciante dei fenomeni di immissione ad opera di fiumi e/o tributari, di risospensione per effetto di vento, onde e correnti;
  • concentrazione di sostanze gialle (o CDOM): include sostanze organiche disciolte (acidi fulvici e umici) di origine sia "interna" (per la degradazione del fitoplancton), sia terrestre (per apporto fluviale) ed è un’importante variabile della modellistica del ciclo del carbonio;
  • coefficiente di attenuazione lungo la colonna d’acqua dell’irradianza incidente e profondità del disco di Secchi: indicatori della profondità dello strato eufotico e della trasparenza dell’acqua;
  • copertura del fondale che, se colonizzata da fanerogame, assume un interesse strategico per il ruolo ecologico che esse rivestono;
  • temperatura superficiale,funzione sia della variabili meteorologiche sia di fenomeni di fioritura algale o inquinamento termico.

Scarica la borchure sul "Telerilevamento per la qualità delle acque"

water-apl

Pubblicato in Elenco applicazioni
Giovedì, 16 Giugno 2011 07:35

Studio dei Terremoti

Terremoti1SmallA causa dei continui e lenti movimenti che hanno luogo nelle profondità del nostro pianeta, la crosta terrestre si deforma immagazzinando una certa quantità di energia elastica. Le deformazioni, e di conseguenza gli sforzi accumulati in un certo intervallo di tempo, si possono rilasciare improvvisamente attraverso rapidi scorrimenti ai due lati di spaccature della crosta stessa, dette faglie. Questo rapido scorrimento, causato dalla fratturazione delle rocce sottoposte a sforzo, genera un terremoto, che rappresenta quindi il rilascio violento dell’energia elastica accumulatasi nel tempo. Inoltre, il processo di deformazione avviene in tempi lunghissimi e continua fino a quando l'energia accumulatasi per l'azione di questi sforzi supera il punto critico di resistenza delle rocce per cui si ha la loro frattura.

L'analisi delle deformazioni superfici associate ad un evento sismico (cioè la deformazione permanente associata ai terremoti) è estremamente utile per una migliore conoscenza della sorgente sismica, soprattutto quando parte del rilascio di sforzo avviene lentamente. In quest’ottica l’utilizzo delle tecniche di interferometria differenziale DInSAR riveste un ruolo fondamentale nello studio e analisi delle deformazioni (i) pre-, (ii) co- e (iii) post-sismiche a piccola e a grande scala. In particolare, (i) il rilevamento della deformazione pre-sismica potrebbe consentire l’individuazione di aree potenzialmente soggette a futuri eventi sismici, con conseguente ricaduta nella definizione di corretti scenari di pericolosità sismica dell’area investigata; (ii) l’analisi delle deformazioni co-sismiche permette lo studio e l’individuazione (in termini di geometria, localizzazione e tipo di faglia) della struttura sismogenetica che ha generato il terremoto in esame; infine (iii) lo studio delle deformazioni post-sismiche, soprattutto con l’ausilio dei satelliti di nuova generazione (Cosmo Sky-Med dell’ASI) che producono immagini di una stessa area Terremoto2Smallcon tempi di rivisitazione molto brevi (4 giorni), consente di seguire nello spazio e nel tempo in maniera molto più dettagliata rispetto a qualche anno fa, l’evoluzione del rilascio di stress accumulato durante e dopo il terremoto. In buona sostanza la tecnica satellitare DInSAR permette l’osservazione costante e dettagliata di aree tettonicamente attive anche molto estese e di aggiornare, rapidamente e con precisione, dati e informazioni relativi alla scena osservata anche laddove, misure puntuali in situ, sebbene spesso più precise, non sono agevolmente ottenibili. Ne discende che tale tecnica può fornire un valido supporto al fine dell’individuazione e del monitoraggio di zone sismiche e, conseguentemente, si pone anche come un potente strumento di pianificazione territoriale delle attività umane.

Pubblicato in Elenco applicazioni
Mercoledì, 13 Luglio 2011 18:35

Monitoraggio geotermico e di aree vulcaniche

MonitAreaVulcanica250 Identificare e circoscrivere le sorgenti di calore, così come modellare quantitativamente lo stato termico nel sottosuolo e la sua evoluzione temporale, sono aspetti cardini per l’interpretazione delle variazioni geochimiche e geofisiche osservabili in un’area vulcanica attiva che richiedono la definizione delle isoterme, ovvero delle linee che congiungono punti con la stessa temperatura media, ed il monitoraggio delle loro eventuali variazioni temporali. Tale compito trae vantaggio dall’uso dei sensori distribuiti in fibra ottica basati sul fenomeno fisico dello scattering stimolato di Brillouin. Tale sensori consentono, infatti, di determinare la distribuzione tridimensionale di temperatura all’interno di una caldera ed essendo costituiti da una normale fibra ottica il cui ingombro, includendo anche il rivestimento protettivo, è di pochi millimetri offrono il vantaggio di poter essere istallati  anche a posteriori rispetto alla realizzazione del pozzo, senza minimamente perturbare la strumentazione esistente. Inoltre, trattandosi di sensori ottici, eventuali interferenze elettromagnetiche tra il sensore e la strumentazione già installata sono scongiurate.

Pubblicato in Elenco applicazioni
Lunedì, 18 Luglio 2011 06:22

Monitoraggio di frane

Frane1_260x300L’ampia diffusione dei fenomeni franosi è causa di un elevato numero di vittime e d’ingenti danni economici alle proprietà pubbliche e private in Italia e nel resto del mondo. In particolare, se ci concentriamo sul caso italiano, gli eventi franosi costituiscono la principale causa di morte tra tutti i rischi naturali; nonostante ciò, la loro pericolosità è spesso sottostimata e scarsamente considerata dalla collettività. Al verificarsi di un disastro, infatti, i danni prodotti dalle frane sono spesso inclusi in quelli derivanti dai processi di attivazione (ad esempio inondazioni, terremoti, eruzioni vulcaniche), a scapito, quindi, di una dettagliata informazione sul rischio da frana. A tale contesto va aggiunto che la continua evoluzione del sistema Terra (cambiamenti climatici, incontrollato uso del suolo, urbanizzazione, deforestazione) rende ipotizzabile un aumento dei fenomeni franosi su scala globale.

È quindi evidente la necessità di approntare efficaci misure di prevenzione e mitigazione del rischio da frana tramite una conoscenza dettagliata della cinematica dell’evento franoso e in particolar modo della distribuzione delle velocità attraverso la massa in movimento.

A tal proposito, le tecniche d’interferometria differenziale SAR (DInSAR) forniscono dati preziosi che possono integrare efficacemente i metodi tradizionali di analisi della frana, permettendo l’individuazione, la mappatura e il monitoraggio dei movimenti dei versanti. Lo studio delle frane può trarre grandi vantaggi dalle tecniche DInSAR in termini di analisi spaziale e temporale dei fenomeni. L'approccio avanzato DInSAR denominato Small Baseline Subset (SBAS), grazie generazione di mappe di velocità e serie storiche di deformazione, permette analisi a scala sia regionale sia locale, che consentono di rilevare fenomeni franosi attivi su vaste aree e allo stesso tempo di concentrarsi sulla deformazione locale che insiste su singoli elementi a rischio.

Un’altra caratteristica della tecnica SBAS è la capacità di sfruttare al meglio grandi archivi di dati SAR, come nel caso dei sensori europei ERS-1/2 ed ENVISAT, permettendo così di studiare fenomeni deformativi su lunghi intervalli temporali.

La figura mostra i risultati dell’analisi SBAS a piena risoluzione spaziale sull’area di Ivancich (Assisi, Italia) interessata da un lento movimento che sta provocando gravi danni a edifici e infrastrutture. La mappa di velocità e le corrispondenti serie storiche di deformazione generate elaborando immagini ERS-1/2 ed ENVISAT offrono importanti informazioni sul movimento del pendio esaminato e sul suo comportamento nel tempo, fornendo dati precisi che possono essere sfruttati in successive analisi e modellazioni. L’esempio mostra chiaramente l'efficacia dell’applicazione delle tecniche d’interferometria differenziale DInSAR (in particolar modo della tecnica SBAS) nello studio e nel monitoraggio delle frane. Queste analisi possono contribuire al miglioramento e alla gestione del rischio da frana, grazie anche all’attuale disponibilità di nuovi sistemi SAR, come la costellazione italiana Cosmo-SkyMed, caratterizzati da elevata risoluzione spaziale (in alcuni casi inferiore al metro) e breve tempo di rivisitazione (potenzialmente 4 giorni).

 

Pubblicato in Elenco applicazioni
Pagina 2 di 2

Seguici su

                  Immagine twitter          Immagine facebook 

 

                         

Chi è online

 614 visitatori online